Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

نویسندگان

  • Erin L. Allwein
  • Robert E. Schapire
  • Yoram Singer
چکیده

We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a margin-based binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class is compared against all others, or in which all pairs of classes are compared to each other, or in which output codes with error-correcting properties are used. We propose a general method for combining the classifiers generated on the binary problems, and we prove a general empirical multiclass loss bound given the empirical loss of the individual binary learning algorithms. The scheme and the corresponding bounds apply to many popular classification learning algorithms including support-vector machines, AdaBoost, regression, logistic regression and decision-tree algorithms. We also give a multiclass generalization error analysis for general output codes with AdaBoost as the binary learner. Experimental results with SVM and AdaBoost show that our scheme provides a viable alternative to the most commonly used multiclass algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Optimization for Binary Classifier Aggregation in Multiclass Problems

Multiclass problems are often decomposed into multiple binary problems that are solved by individual binary classifiers whose results are integrated into a final answer. Various methods, including all-pairs (APs), one-versus-all (OVA), and error correcting output code (ECOC), have been studied, to decompose multiclass problems into binary problems. However, little study has been made to optimal...

متن کامل

Estimating smile intensity: A better way

Both the occurrence and intensity of facial expressions are critical to what the face reveals. While much progress has been made towards the automatic detection of facial expression occurrence, controversy exists about how to estimate expression intensity. The most straight-forward approach is to train multiclass or regression models using intensity ground truth. However, collecting intensity g...

متن کامل

Multiclass classification with potential function rules: Margin distribution and generalization

Motivated by the potential field of static electricity, a binary potential function classifier views each training sample as an electrical charge, positive or negative according to its class label. The resulting potential field divides the feature space into two decision regions based on the polarity of the potential. In this paper, we revisit potential function classifiers in their original fo...

متن کامل

Hybrid Hierarchical Classifiers for Hyperspectral Data Analysis

We propose a hybrid hierarchical classifier that solves multiclass problems in high dimensional space using a set of binary classifiers arranged as a tree in the space of classes. It incorporates good aspects of both the binary hierarchical classifier (BHC) and the margin tree algorithm, and is effective over a large range of (sample size, input dimensionality) values. Two aspects of the propos...

متن کامل

AR-Boost: Reducing Overfitting by a Robust Data-Driven Regularization Strategy

We introduce a novel, robust data-driven regularization strategy called Adaptive Regularized Boosting (AR-Boost), motivated by a desire to reduce overfitting. We replace AdaBoost’s hard margin with a regularized soft margin that trades-off between a larger margin, at the expense of misclassification errors. Minimizing this regularized exponential loss results in a boosting algorithm that relaxe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2000